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The microphase separation transition in five asymmetric diblock copolymers {poly(styrene-block-isoprene)} 
is studied using small angle X-ray scattering. In the disordered phase Leibler's random phase approximation 
together with a polydispersity correction yields a quantitative description of the scattering profiles. Close 
to the microphase transition we find strong deviations from mean field theory. The peak intensity and the 
apparent interaction parameter are smaller than expected. The Frederickson-Helfand theory explains these 
effects only qualitatively in terms of concentration fluctuations. The polymer coil size is found to increase 
when approaching the microphase transition. 
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I N T R O D U C T I O N  

The ability of block copolymers to phase separate on a 
microscopic scale opens the way for many valuable 
technical applications of these materials 1. It has 
consequently been of great interest to determine the 
dependence of morphology in such systems on 
parameters like molecular architecture and thermal 
history. More recently the so-called weak segregation 
limit has raised considerable interest: if the repulsive 
interaction between the different constituents of the block 
copolymer chain is small enough, the material undergoes 
a phase transition from the ordered into a disordered, 
homogeneous phase at the microphase separation 
temperature (MST). This phase transition as well as the 
properties of the homogeneous phase were first treated 
by Leibler 2 using a generalization of de Gennes' random 
phase approximation (RPA) 3. The theory interprets the 
microphase separation as a first-order phase transition 
quite similar to the crystallization of a liquid. 

A second important result is the calculation of 
correlation functions for concentration fluctuations in the 
homogeneous phase. They are related to the strength of 
the monomer-monomer  interaction as well as to the 
structure and size of the polymer chain. This correlation 
function may be measured using scattering techniques 
like neutron or X-ray scattering. 

In this paper we briefly discuss Leibler's results for 
X-ray scattering from the homogeneous phase of a block 
copolymer melt. More recent improvements of the theory 
that take into account the effects of polydispersity are 
incorporated. For  the transition regime close to the MST 
it is important to consider the contribution of 
concentration fluctuations to obtain the correct structure 
factor. 

Small angle scattering experiments on block copoly- 
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mers in the homogeneous phase have been reported in 
the literature for a variety of systems 4-8. Comparison of 
the measured structure factors with Leibler's theory in 
general gave good agreement and made it possible to 
determine the interaction parameter X and its tempera- 
ture dependence. It was found that in approaching the 
MST the measured intensities were lower than those 
expected from RPA theory 7 and the interaction 
parameter deviated from its expected temperature 
dependence 5. Other authors reported a shift of the peak 
in the structure factor with temperature 4'7. 

In this paper we present small angle X-ray scattering 
(SAXS) data for five styrene-isoprene diblock copoly- 
mers that differ in either composition or molecular weight 
distribution (Table 1). The static structure factor in the 
homogeneous phase will be compared to the prediction 
of mean field theory. A quantitative analysis allows the 
determination of interaction and chain size parameters. 

Of particular interest are the strong deviations 
from theory found in the transition regime. We 
systematically study these effects and discuss their origin. 

Table 1 Characterization of the polymers used 

No. MN b .fc P=Mw/MN d Block A, Mw, P 

1 24000 0.78 1.05 
2 14600 0.25 1.05 Polystyrene, 4100, 1.01 
3 a 18 700 0.76 1 . 0 4  Polyisoprene, 4000, 1.03 
4 9200 0.26 1.5 - 
5 22 800 0.28 1.5 

"Styrene block deuterated 
b Osmometry 
c Volume fraction of styrene from 1H n.m.r. 
d By g.p.c. 
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EXPERIMENTAL 

Synthesis and character&ation 
Polymer 3 was purchased from Polymer Laboratories 

Ltd, Shawbury, UK. It had already been used in a 
previous study 6 and its styrene block is perdeuterated. 

In the synthesis of the other polymers conventional 
high vacuum methods were employed for the purification 
and degassing of solvents and monomers. The polymer- 
ization was carried out in cyclohexane under a nitrogen 
atmosphere at room temperature with sec-butyllithium as 
initiator. The monomers were sequentially added to the 
solvent starting with styrene. In some cases a sample of 
polystyrene was taken before addition of the isoprene 
monomer. The gel permeation chromatography (g.p.c.) 
molecular weight characterization of this block is given 
in Table 1. The reaction was terminated with methanol. 
After precipitating the polymer it was freeze dried from 
benzene. 

The microstructure of the diblock copolymers was 
determined using 13C nuclear magnetic resonance 
(n.m.r.). The trans content of the isoprene block was 
found to be 15%. 1H n.m.r, gave the volume fraction (f) 
of polystyrene (Table 1). The molecular weight distri- 
bution was obtained from g.p.c, and the number average 
molecular weight from osmotic pressure measurements 
(cf. Table 1). 

Small angle X-ray scattering 
For the scattering experiments a Kratky compact 

camera (Paar, Graz, Austria) in the conventional slit 
collimation was used. Data were collected using either a 
position-sensitive detector or a scintillation counter in the 
usual step scanning mode. The samples were contained 
in brass holders with acetate windows. This allowed 
precise temperature control with fluctuations < 0.5 K. All 
experiments were performed in an evacuated camera. 

Further data treatment involves subtraction of 
background scattering and accounting for the slit type 
beam geometry using Strobl's desmearing algorithm 9. In 
order to obtain the scattering cross-section of the sample 
without any arbitrary prefactors we measured the 
intensity of the incoming beam with a 'moving slit device' 
(Paar). 

The source of radiation was a copper anode together 
with a Siemens generator (Kristalloflex 710H). We 
operated at wavelength 2=0.154nm using Cu Ks 
radiation. The Kfl contribution was reduced using Ni 
filters. In an accessible scattering angle interval of 
0.15°~<20~<4.2 ° we covered a range of wave vectors 
q = 4zr/2 sin 0 between 0. I nm-1 and 3 nm-1. 

SCATTERING THEORY 

Here we provide the relationship between the experi- 
mentally determined X-ray scattering curve and the 
thermodynamic and structural properties of the sample. 
In general X-ray scattering is caused by the existence of 
electron density fluctuations in the sample. For a 
two-component system like a diblock copolymer the 
main source of such fluctuations is variations in 
concentration as long as there exists a difference in the 
electron number densities qa and r/b for the respective 
components a and b. The styrene-isoprene system is quite 
favourable in this respect with an electron density 
difference of 10%. This part of the X-ray scattering, the 

contrast scattering, is then given as 

I~ = (t/,~ - qs,) 2 VS(q) (1) 

with V the volume of a polymer chain and S(q) the static 
structure factor for concentration fluctuations. Equation 
(1) holds in the same form for other scattering methods 
like neutron scattering with the electron densities being 
replaced by the scattering length densities of the 
components isoprene (Is) and styrene (St). 

Another source of electron density fluctuations is the 
variation of density. They give rise to a q independent 
scattering component. Statistical mechanics relate this 
intensity to the compressibility xr of the sample: 

I~ = <tl>2kBTtcv (2) 

Here (t/) denotes the average electron density of the 
system and kB is Boltzmann's constant. 

The contribution of equation (2) to the total X-ray 
scattering cannot be neglected (Figure I), as it would lead 
tO a significant misinterpretation of the structure factor 
S(q). I,, is found experimentally from measurements at 
large scattering angles where S(q) has decayed to 
practically zero. 

STRUCTURE FACTOR OF A DISORDERED 
DIBLOCK COPOLYMER 

Here we present some results of Leibler's RPA and give 
an expression for S(q) including the effects of 
polydispersity. We begin by considering a monodisperse 
block copolymer melt in its homogeneous phase. 

Each molecule is comprised of Nst styrene and N~s 
isoprene segmental units. The units must refer to the same 
volume per segment. The block length ratio f=Nst/ 
(Nst+Nis) will be the only parameter describing the 
specific geometry of the molecule. It is obvious that there 
are no concentration fluctuations on a large length scale 
compared to the radius of gyration Rg of a polymer, 
because the styrene and isoprene blocks cannot diffuse 
independently andf is  a fixed quantity. Correspondingly 
the X-ray scattering must vanish in the limit qRg<< 1. 
Going to shorter scales that refer to distances within a 
molecule, strong concentration fluctuations are to be 
found because of the block structure of the copolymer. 
They will no longer be felt on the very short, segmental 
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Figure 1 Typical SAXS curve (sample 1, T=443 K). - - ,  Fit for RPA 
theory; - - - ,  q independent scattering component 
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scale where all segments are essentially surrounded by 
like ones. The X-ray scattering curve therefore exhibits 
a maximum around qR,,~ 1 which is primarily due to 
the correlation hole effect 3. 

The specific interaction between polymer segments was 
accounted for by Leibler 2 in a mean field type theory, 
the RPA. Assuming a Gaussian coil conformation in the 
absence of interactions he finds for the structure factor 
S(q) 

N - F(f,[qRg]2)- 2zN 
S(q) 

N = Nst + Nls (3) 

Equation (3) describes a modification of the pure 
correlation hole scattering. The peak remains at the same 
position q* but gains in height with increasing values of 
the Flory-Huggins parameter X. In a lattice model Z is 
used in a phenomenological manner to describe the local 
free energy per lattice point Gloc 

1 6~2G1oc 
Z = (4) 

2ka T ¢3f 2 

As long as the major contribution to G~o ~ comes from 
contact interaction between segments, Z displays the 
simple temperature behaviour 

1 zc,~ (5) 

The study of phase diagrams in polymer blends however, 
suggests in general a more complex temperature and even 
composition dependence of Z (refs. 10 and 11). In the 
latter case equation (4) is no longer valid. 

The effect of the interaction obviously lies in an 
enhancement of fluctuations with wavevector q*. At the 
spinodal value (zN)s=½F{f,[q*Rg] 2) the amplitude of 
these fluctuations diverges and the block copolymer has 
gone through its microphase separation. The RPA theory 
gives an explicit expression for F(f,[qRg] 2) in terms of 
Debye functions 2 g0 c, x) 

9(1,x) 
F(f, x)= 

with 

g(f, x)g(1 --f, x ) -  l[g(1, x ) -  g0 c, x)--g(1 --f, x)] 2 

(6) 

g(f, x)=22 [f x +e-fx--1] 

The theory may of course be generalized to account for 
more complex molecular architecture like multiblock 
copolymers and stars 12-~5. The form of equation (3) 
remains unchanged with F being replaced by an 
expression describing the particular structure of the 
molecule. 

Polydispersity correction 
The assumption of monodispersity is of course highly 

unrealistic. However, in the spirit of a mean field theory 
a distribution of molecular weight may be incorporated 
in the theory in a straightforward manner ~6 because the 
correlation functions entering equation (3) in terms of 
Debye functions already involve an average over 
molecular weight. The influence of a molecular weight 
distribution was discussed by Leibler and Benoit ~6 for 
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the symmetric case f =  ½ and has later 4'8 been generalized 
for arbitrary f. It is assumed that the number of 
monomers in both blocks as well as in the block 
copolymer is distributed according to a Schulz-Flory 
density 

vk+l 
tp(N) = Nke-~N (7) 

r(k+l)  

k and v are parameters of the distribution and are related 
to the number average <N>N and weight average <N)w 
via 

P=- (N)w-k+~2 (N)N - k + l  (8) 
<N)N k+ 1 v 

The notations <h>w and <h>N symbolize 

( h )N-- Ih(N)q~(N)dN 
<h>w = Sh(N)" Ntp(N)dN / < N>N 

As a further simplification we assume that the 
polydispersity P and therefore k is the same for both the 
blocks and the total polymer. Following Hong and 
Noolandi 17 we use weight averages to compute the 
correlation functions in equation (6) and obtain 

/ j j  

(No(f,X)>w=<N>N {~ lf~ffF(1, k + 3; 2k + 5; Zo) 

- aF(l, k+2;  2k + 4;Zo) 

/ fx \-~k+2~ 
+ ~ l + k ~  ) F(1, k+2;2k+4;z,)} 

(Ng(1- f ,  X)>w = <N>Nt ~ V(1,k + 2;2k + 5;Zo) 

-ccF(1,k + 2,2k +4, Zo) 

+~(1 + k+ll - - fx~ -(k + 1 ) , ]  

F(1,k + 2;2k +4;z'~)} 

with 

2 1 k + l  
~ = X  2X l _ f X  2k+3 

1-2f  
Z 0 -- 

1 - f  

x = (qRg) 2 (9) 

where F is the hypergeometric function 18 and equation 
(9) is written forf~<½. It is similar to the results obtained 
by Bates and Hartney 4 and Mori et al. 8 but it uses weight 
averages as was pointed out by Hong and Noolandi 17. 
In view of the complex structure of the true molecular 
weight distribution however, equation (9) can only be 
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Figure 2 Influence of polydispersity P on the scattering function of 
an asymmetric diblock copolymer (]'=0.25) with )~N-- 10. P: - - ,  1.00; 
- - - ,  1 . 0 5 ; - - - ,  1.10; ...., 1.20 

considered as a model which allows the study of the effects 
of a molecular weight distribution. 

It is important to note that the composition f is no 
fixed quantity in a polydisperse sample. It becomes 
obvious from the qualitative discussion above that 
concentration fluctuations over large distances will then 
be possible and will give rise to X-ray intensity at small 
angles. This effect is observed in Figure 2. The theoretical 
curve, which is obtained by inserting equation (9) into 
equations (6) and (3) does not extrapolate to zero for 
q = 0. The figure shows the qualitative changes of the 
structure factor S(q) for several degrees of polydispersity P. 

With increasing P the peak gains in height and shifts 
to smaller values of wavevector. The microphase 
separation is therefore reached at smaller values of xN 
compared to the monodisperse case. In other words, 
polydispersity shifts the critical (xN)s to smaller values. 

Furthermore it is seen that neglecting polydispersity 
leads to significantly incorrect values for the peak position 
q* and therefore the radius of gyration of the polymer. 

Concentration fluctuations 
The divergence of S(q*) as described by equation (3) 

needs closer inspection. In the theory of linear response 
S(q*) is proportional to the susceptibility of the system 
and is obtained as the inverse of the coefficient of the 
quadratic term in an expansion of the free energy density 
with respect to the order parameter 2 (cf. equation (10)). 
The order parameter if(r) is defined as the difference 
between the reduced local density of styrene segments 
and its average value f: 

¢(r) = Pst(r)/~ --f 
where ~ is the average density of polymer segments. Close 
to the MST ~9(r) will be dominated by components of 
wavevector q*. If one assumes a lamellar structure for 
the ordered phase (i.e.f~-½) then 19 

(O(r))oc2A cos(q*F, ti) 

with t~ a unit vector describing the orientation of the 
lamellae. The Landau expansion for a reduced free energy 
density then reads 

fL(,~) = Z,~2 + _U ,~4 
4 

with 

N 
z = 2 N ( ~ , - X ) = - -  (10) 

S(q*) 

,4 is proportional to the amplitude A of the order 
parameter. The parameter u depends on f and is of the 
order 1/N ½. It is defined by Binder and Frederickson 19. 
Obviously the Landau expansion gives exactly Leibler's 
result (cf. equation (3)). However, it is known to break 
down near the phase transition because of the 
contribution of higher order terms to the free energy. 
Leibler points out that the block copolymer problem 
belongs to a class of systems that were discussed by 
Brazosvskii 2°. In this formalism one obtains a Hartree 
expansion of the free energy density analogous to 
equation (10) with renormalized parameters ~., uR, WR 19 

fH=Z.A2 +U" A# +W-S A 6 (11) 
4 36 

For TR one has the following implicit equation 19'zl 

e(f) 
rR = 2N(Xs-- ~0 + - -  (12) (Nr.)~ 

c(f) is a constant depending on the copolymer 
composition f,  but f is assumed to be close to 1/2. 

As a consequence of equation (12) the X-ray intensity 
at q* will no longer diverge but remain at a finite limit. 

Following Frederickson and Helfand 21 the full 
structure factor (cf. eq. (3)) neither changes its shape nor 
the location of its maximum q*. The parameter xN 
however, is renormalized and will be called an apparent 
interaction parameter (;~N)app. They find 

1 cff)  
(zN)~pp=ZN (13) 

2 (Nz,) ½ 

The temperature dependence of the interaction is carried 
by the parameter xN. 

RESULTS AND DISCUSSION 

The data obtained from the SAXS experiment in general 
are the sum of three components: 
1. the scattering caused by concentration fluctuations 

(eq. (1)); 
2. a flat background due to density fluctuations (eq. (2)); 
3. parasitic scattering at small angles. 

In some cases (sample 1) the parasitic scattering was 
negligible. For others it produced a substantial 
background and was phenomenologically taken into 
account by a Porod term constant/q 4. The physical origin 
of this scattering is not clear. One possible reason could 
be the abundance of homopolymer in the sample 6. This 
assumption is not confirmed by g.p.c, measurements. 
Other authors ascribed the effect to 'domain scattering '4 
or simply neglected it. We were unable to detect a 
systematic dependence of this intensity on temperature, 
molecular weight or composition of the block copolymer. 

For both other components listed above an explicit 
theoretical description is available (see earlier). It is 
therefore straightforward to fit the theory to the 
experimental data using a standard least squares 
algorithm. The finite angular resolution of the Kratky 
camera is accounted for by convoluting the theoretical 
scattering curve with the vertical primary beam profile 
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Figure 3 Temperature dependence of the scattering component I~. 
- - ,  Computed from the compressibility • (see text). Sample no.: D, 
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in the plane of registration. The effect of finite resolution 
may not be neglected. 

Polydispersity enters this procedure as a fixed input 
parameter which is obtained from g.p.c, measurements. 
Parameters calculated in the fit then are: 
1. the compressibility XT of the sample from the flat 

background; 
2. the radius of gyration of the chain Rg essentially given 

by the peak position q*; 
3. the interaction parameter xN from peak height and 

width. 
Finally it is of course difficult to estimate the contrast 

(?~St-- / 'hs)  2 and its temperature variation from thermo- 
dynamic data. We have therefore treated this quantity 
as an additional fit parameter and compared it with 
tabulated values for the density and its temperature 
variation 22. The fitted contrast factors were in all cases 
in accordance with those calculated from thermodynamic 
data. 

Figure 3 displays the results for the temperature 
dependence of the density fluctuation component. The 
data for samples 2, 4 and 5 fall on one universal curve. 
Indeed these polymers are of the same composition but 
differ in molecular weight. Using known data for the 
compressibilities of the homopolymers polyisoprene 22 and 
polystyrene 23 one expects a quadratic law I K = aT+fiT 2 
with a and fl depending on the composition of the block 
copolymer. Our data confirm this T dependence 
quantitatively. An exception is sample 1 whose apparent 
compressibility is too low. 

In a preliminary procedure we evaluated the SAXS 
profiles independent of the specialities of RPA theory. 
Expanding F in equation (3) around its extremum at q* 
one finds TM 

S(q*) 
S(q) = (14) 1 + ~2(q_q,)2 

Equation (14) is similar to the Ornstein-Zernicke type 
expressions found in the theory of critical phenomena. 

Microphase separation: B. Holzer et al. 

The main difference lies in the existence of a finite 
wavevector q* for which S(q) reaches its maximum. The 
correlation length ~ denotes the typical distance over 
which the correlation of fluctuations decays. In RPA 
theory ¢ and the peak height S(q*) are related 
to the interaction parameter Z via 

F" 1 
~2_ S ( q * ) = - -  (15) 

4N(z, -z) '  2(Z,-Z) 

At the spinodal point (Z~Zs) the correlation length 
diverges, i.e. the Lorentzian in equation (14) has zero 
width. At the same time S(q*) goes to infinity. 

The advantage of using equation (14) over the full RPA 
theory lies in its simplicity and the direct interpretation 
of peak shape parameters in terms of thermodynamic 
properties. It is of course only applicable in the immediate 
vicinity of q*. As long as £<<Zs the peak shape deviates 
clearly from a Lorentzian. We use equation (14) for a 
determination of S(q*) and its temperature dependence. 
Assuming x(T)oc ~ we have 

1 1 1 
- -  o c  - - - -  ( 1 6 )  
S(q*) T~ T 

When approaching the phase transition however, one 
expects deviations from the simple 1/T law of equation 
(16) because of the fluctuation correction discussed 
earlier. 

The SAXS profiles of all four diblock copolymers 
described in Table 1 exhibit a pronounced variation with 
temperature which is shown in Figure 4 for sample 2. 
Lowering T one finds a strong increase in peak intensity. 
At the same time the peak narrows and shifts to smaller 
q values. This behaviour is found for all samples. The 
SAXS curves are fully reproduced in heating and cooling 
runs if a minimum of 30 min is allowed for the sample 
to equilibrate at each temperature. 

As an example we plot in Figure 5 the reciprocal peak 
intensity US(q*) versus 1/T for sample 2. The linear 
extrapolation to infinite intensity as suggested by 
equation (16) leads to a spinodal temperature T~. 
However, for all samples one finds the experimental 
points to bend off the linear law when approaching the 
MST. 

In a next step the interaction parameter X and the 
radius of gyration R, are extracted from the SAXS 
profiles. To this end equation (9) is used for the 

I [e.u. nm -s] 

"290 
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Figure 4 Temperature dependence of the SAXS curve for sample 2 
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correlation functions in equations (6) and (3). The 
resulting profile is fitted to the data and the excellent 
quality of these fits is shown in Figure 1. It turns out 
however, that only for rather narrow molecular weight 
distribution (samples 1-3) does the model of a 
Schulz-Flory distribution lead to correct results. Our 
'polydisperse' samples 4 and 5 deviate from this model. 
As a consequence the location of the maximum q* cannot 
be predicted by the molecular weight although this is 
possible for the other samples. In the following we 
therefore restrict attention to those samples with P ~< 1.05. 
A more detailed analysis of the g.p.c, results on 
polydisperse samples and their quantitative use in a 
description of the SAXS profiles is currently in progress. 

Fioure 6 collects the results of the temperature 
dependence of the Z parameter. Here Z refers to the 
interaction per average molar volume v=(151sfSt) -~, 
where t3~s and fst are the molar densities of polystyrene 
and polyisoprene, respectively. The quantity zN entering 
equation (9) is therefore reduced to Z using 

N = N ~ t , ~ + N *  P~ st (17) 
~/ fiSt ~[ Pls 

= Ns t  + Nls  (18) 

The N* are the degrees of polymerization for each block. 
It is seen in Figure 6 that z(T) versus ~ displays a linear 

regime which coincides with the linear relation between 
and -~. In the case of sample 1 this regime is only 

approximately reached. It is this temperature interval 
which may safely be treated as the homogeneously 
disordered phase. Approaching the MST the observed Z 
values are smaller than those extrapolated from the linear 
behaviour at higher T. The presence of concentration 
fluctuations diminishes the number of contacts between 
the isoprene and styrene blocks compared to the 
homogeneously disordered phase. The lattice model 
therefore overestimates their contribution to the local 
free energy (eq. (4)). This effect is compensated by a 
reduced value of the interaction parameter Z. 

We could not find a quantitative description of our 
data in the transition regime using equation (13). Using 
a linear law for z(T) in equation (12) the dotted line in 
Figure 5 is obtained. 

B 
z = A + -  (19) 

T 

The parameters A and B however, are not the same as 
those obtained from the data in Figure 6 (cf. Table 2). 
Bates et al. z4 report a quantitative correspondence 
between their data on a symmetric diblock copolymer 
and equation (13). Our polymers are strongly asymmetric 
in composition (cf. Table 1) and the theory would 
therefore only be expected to be qualitatively correct. 

Taking only the linear regime in Figure 6 into account 
there still remain marked differences between the three 
polymers studied that lie outside the limits of 
experimental error. Also included in the figure are data 
from Mori et al. s and Owens et al. 7 on styrene-isoprene 
block copolymers. Although we cannot exclude the 
possibility that our polymer 1 has not completely reached 
its homogeneous state there seems to be a strong 
dependence of Z on the composition of the copolymer. 
In view of the phenomenological significance of Z this 
finding is not surprising. 

The Gaussian radius of gyration R ° is calculated 
from the known segment lengths of polystyrene 

Table 2 Coil size, transition temperatures and interaction parameter 
(z= A + B/T)  

No. N R ° (rim) T~ (K) a A x 103 a n a 

1 275 4.35 417 (17) --6 (5) 39 (1) 
2 179 3.64 315 (6) --79 (2) 55 (1) 
3 215 3.85 347 (7) --17 (4) 36 (1) 
4 113 2.90 245 (36) - - 
5 279 4.54 324 (7) - - 

"Errors are given in parentheses 
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Figure 7 Radius of gyration divided by its Gaussian value. Sample 
no.: IN, 1; ©, 2; A, 3 

(ast=0.68 rim) 25 and polyisoprene (a~,= 0.63 nm) 26 and 
the degrees of polymerization Nst and N,~ (Table 1). In 
Figure 7 the experimentally determined Rg is divided by 
its Gaussian value and plotted versus the reduced 
temperature. There is a clear temperature dependence 
indicating a stretching of the coil when approaching the 
MST. This effect is shown for polymer 2 in more detail 
in Figure 8. In addition to using the RPA structure factor 
to obtain R, as a parameter for the overall shape of the 
profile one can separately obtain the segment length a 
from the Kratky regime qR,>> 1. For the homogeneous 
system above the MST one simply has 

12ill -J') 
S(q)~ (20) qZa2 

On both scales, segmental and radius of gyration, the 
same T dependence is found. Numerical simulations of 
block copolymer melts have also shown an increase of R, 
over its Gaussian value of the same order 27. 

CONCLUSIONS 

The concentration fluctuations in the homogeneous melt 
of diblock copolymers are found to be well described by 
Leibler's RPA. The correct interpretation of SAXS 
experiments however, affords the introduction of a 
distribution of molecular weight into the theoretical 
structure factor. Including the scattering from density 
fluctuations we have a precise description of the SAXS 
experiment in the range 0.9 ~< qRg <~ 15. 

It is then possible to derive values for the interaction 
parameter :~ and study its dependence on temperature 
and composition. We find the temperature variation of 

in the homogeneous phase to be consistent with the 
linear law equation (19), and g appears to depend on the 
composition of the block copolymer. 

The microphase transition takes place in a rather broad 
temperature range. This regime is characterized by a 
reduction of the number of contacts between the blocks 
and an increase of the polymer coil size. Both 
observations demonstrate the necessity to incorporate 

Microphase separation: B. Holzer et al. 
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Figure 8 Comparison of coil expansion obtained from the peak 
position (~Rg) and from the large q scattering (--,Rg (Kratky)) for 
sample 2. I ,  Rg (Kratky); IN, R, 

composition fluctuations into a theory for the microphase 
separation 21. So far the only theory available treats 
composition fluctuations for a nearly symmetric diblock 
copolymer. Its major conclusions concerning the 
structure factor are qualitatively supported by our data. 

In approaching the MST we find an increase of the 
polymer coil size. It is reflected by a shift of the maximum 
q* as well as by an expansion of the segment length as 
obtained from the scattering at large scattering vectors. 
The observed swelling of the polymer coil is not described 
by the theory. It is expected from scaling considerations 
because the ideal coil relation R, ocN °5 in the 
homogeneous phase is replaced by D 0c  N 0 " 6 3 6  for the 
period of the ordered phase 2s. Monte Carlo simulations 
show the swelling in the transition regime 27. 
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